Resins are used in a lot of formulations of Coatings, Inks, Paints, and dispersions of fillers, quartz, pigments that have functional application.
HumenChem Product Page
As a definition of resin:
A thick, sticky substance that is produced by some trees and that becomes yellow and hard after it is collected, or any of various similar substances produced by a chemical process for use in industry:
Or
any of various solid or semisolid amorphous fusible flammable natural organic substances that are usually transparent or translucent and yellowish to brown, are formed especially in plant secretions, are soluble in organic solvents (such as ether) but not in water, are electrical nonconductors, and are used chiefly in varnishes, printing inks, plastics, and sizes and in medicine.
On industry, Natural resin are still used in some applications but synthetic resins are more common where manufacturers develop specific product for each particular technical demand.
Main use is as a carrier of different pigments and fillers and should be formulated under premise that compatibility with solvent and rest of raw materials than are on formula and the end uses of the mixing.
Main function of the resin is to be cured by evaporation of solvent, by reaction of two component (resin and catalyst) by energy process of curing (UV light or LED).
The most values to test in a resin are focused in its performance and physical properties as original form before cured process and after it when all resin has been cured at final application.
Most popular liquid resin uses in Potting system are liquid rubber cured under room temperature, typical values that you can find on TDS:
Liquid resin comes in forms of different appearances commonly described as clear, transparent, translucent, or in different colours, as an example showed on table detailed below:
Appearance assessment is a simple and easy way to estimate the quality of the liquid resin. A change in color indicates a change in wavelength absorption of visible light by the resin. Hence, it could be important to assess the appearance of the resin to ensure the quality of the resin as the change can indicate contamination or impurities in the raw material, process variations caused by heating and oxidation, or degradation of products exposed to weathering over time. There is no existing standard test method specifically for liquid resin. However, visual tests have been established by comparing the sample to a known standard. Objective measurements can also be done with color spectrophotometers that give reliable data on a consistent basis. ASTM and ASTM provide some information about the standard method to assess the color of any liquid materials.
The Gardner Colour scale as specified in ASTM D is a single number colour scale for grading light transmitting Scale samples with colour characteristics ranging from light yellow to brownish red. It is widely used for oils, paint and chemicals, such as resins, varnishes, lacquers, drying oils, fatty acids, lecithin, sunflower oil, linseed oil. The scale is defined by the chromaticities of glass standards numbered from 1 for the lightest to 18 for the darkest.
The major objective of the visual platinum-cobalt (Pt-Co) method of colour measurement is to rate specific materials for yellowness. This yellowness is frequently the result of the undesirable tendency of liquid hydrocarbons to absorb blue light due to contamination in processing, storage or shipping.
Clear liquids can be rated for light absorbing yellowish or brownish contaminants, using scales that simulate the long-established visual-comparison method just cited. Where needed, dimensions of colour can be reported to identify any pinkness or greenness (one dimension), or greyness.
The term Viscosity requires a separate study, detailed below the most common methods:
The operation of the Brookfield viscometer is based on the principle of rotational viscosimetry; It measures the viscosity by capturing the torque required to rotate at a constant speed a spindle immersed in the sample of fluid to be studied.
The torque is proportional to the viscous resistance on the submerged shaft, and consequently, to the viscosity of the fluid.
Brookfield viscometers are easy to install and versatile and do not require great operational knowledge.
Each viscometer is composed of the following elements:
The adjustment and calibration of these stems is carried out by the manufacturer himself. Other adjustments and subsequent checks may be carried out using Newtonian liquids of known viscosity.
Choice of speed and stem:
The viscosity / spindler ratio will be chosen, depending on the value of the viscosity to be measured, the desired accuracy and the velocity gradient tested.
It is necessary to make the choice so that the reading on the dial is between 20 and 95% of the scale. For better accuracy, it is advisable to use the interval between 46 and 95%.
Calculations:
Brookfield RV viscosity, in cP, of the sample to be tested, is obtained according to the following expression:
Viscosity calculation
K being a coefficient that depends on the speed / rod ratio used and L the average value of the two readings given as valid.
A Type C Ball Drop Höppler Viscometer measures the viscosity of transparent non-Newtonian fluids very accurately and can be used in the temperature range of -20 to 120 ° C.
The determinations with this viscometer are based on the measurement of the time it takes for a ball to travel between the two extreme marks indicated on the viscometer. A Höppler type viscometer can be seen in the attached figure.
The apparatus contains, as a fundamental element, a thick-walled glass tube that has two annular signals marked in the vicinity of its ends and which in turn is inserted into another much wider tube intended to accommodate circulating water as a thermostatic medium. The assembly is arranged in a slightly inclined position on a support similar to that of a microscope and can be rotated 180 ° around an axis perpendicular to both tubes.
The Höppler viscometer is very accurate and is frequently used in the chemical industry (polymer solutions, solvents, inks) in the pharmaceutical industry (excipients, glycerin) and in the food industry (jellies, sugar solutions), as well as among the manufacturers of mineral oils.
Calculations:
The time it takes for the ball to travel between the two extreme marks of the viscometer will be measured several times and the results will be averaged. This value is multiplied by the factor of the ball used, which can be found in the equipment manual. The result gives the viscosity, expressed in mPa.sec, which is equivalent to cPs. Is given by
El tiempo que tarda la bola en recorrer el espacio entre las dos marcas extremas del viscosímetro, se medirá varias veces y se promediarán los resultados. Este valor se multiplica por el factor de la bola utilizada, que se encontrará en el manual del equipo. El resultado da la viscosidad, expresada en mPa.seg, que equivalen a cPs. viene dado por:
Viscosity calculation
For more Elastic Polyester Resins for Consumer Electronics Coatingsinformation, please contact us. We will provide professional answers.
Viscosity (Kpa.seg) = cP = T (Db-Ds) x K
Where:
As a definition:
Shore Hardness is a measure of the resistance a material has to indentation. There are different Shore Hardness scales for measuring the hardness of different materials (soft rubbers, rigid plastics, and supersoft gels, for example). These scales were invented so that people can discuss these materials and have a common point of reference.
DIN ISO -2:
A method for determining the indentation hardness of vulcanized or thermoplastic rubber by means of a pocket hardness meter calibrated in IRHD. The hardness of rubber, as measured by an IRHD pocket meter or a Shore durometer, is determined from the complex response of the rubber to an applied indentation. An IRHD pocket meteris a portable hand-held durometer calibrated to measure on the IRHD scale. The measurement will depend upon:
Because of these factors, it is inadvisable to relate results obtained using an IRHD pocket meter directly to Shore durometer hardness values, although correlations have been established for some individual rubbers and compounds.
As a definition:
A measure of the ability of a material to withstand a longitudinal stress, expressed as the greatest stress that the material can stand without breaking
Is the most common standard for determining the tensile properties of vulcanized (thermoset) rubber andthermoplastic elastomers. Compounds in this family are used to create a vast array of consumer goods such as tires, footballs, and rubber bands. This family also produces highly specialized materials, such as O-rings on space shuttles, which must perform reliably under extreme environmental conditions.
ASTM D412 measures the elasticity of a material while under tensile strain, as well as its behavior after testing when the material is no longer being stressed. ASTM D412 is conducted on a universal testing machine (also called a tensile testing machine) at a rate of 500 ± 50 mm/min until the specimen fails. Though ASTM D412 measures many different tensile properties, the following are the most common:
Tensile strength – the maximum tensile stress applied in stretching a specimen to rupture.
Tensile stress at a given elongation – the stress required to stretch the uniform cross-section of a test specimen to a given elongation.
Ultimate elongation – the elongation at which rupture occurs in the application of continued tensile stress.
Tensile set – the extension remaining after a specimen has been stretched and allowed to retract in a specified manner, expressed as a percentage of the original length.
As a definition:
Elongation at break is the percentage increase in length that a material will achieve before breaking. A higherpercentage usually indicates a better quality material when combined with a good Tensile Strength.
Solid Rubber that exhibits a high Elongation at Break but a low Tensile Strength may be indicative of a poorly mixed or under cured polymer, which if used to produce Rubber Gaskets or Seals will see premature failure.
What is polyester resin and what can you use it for? In this article we explain the basics of working with polyester resin. At Polyestershoppen you will find all the materials you need to start your polyester project. Our specialists are also ready to advise you and help you get started with your project. So feel free to contact us!
Polyester is usually combined with fibreglass, to obtain a strong, impact-resistant and rigid product. Examples of polyester products include boats, ponds, swimming pools, car bumpers, gutters, works of art, scooter covers, waterproof coverings and much more.
Combining polyester resin with glass fibre is called laminating. The resulting plastic is called a laminate, named after the different layers of fibreglass it is made up of.
Polyester is ideal for products where freedom of shape is paramount. Polyester with glass fibre is always laminated against a mould (temporary or otherwise). This temporary mould can be made of any material and can also become part of the construction. Examples of moulds are: polyester moulds, moulds made of wood, foam or plaster, stretched T-shirt fabric or chicken wire. You can make products in a mould, but also clad objects. In short, if you need something to laminate the polyester against, it can be made with polyester.
Polyester products can be finished in various ways. Against a smooth mould, gelcoat can be used, an approximately 0.3 mm thick thoroughly coloured layer based on polyester. This layer takes on the surface texture of the mould. A mirror-smooth finish is usually aimed for. For filling small holes and a tight finish, please use polyester putty. This product has a fast cure and is easy to sand.
Application Features RESION Polyester laminating resinOn the other side of the polyester product, or if an object is coated, a polyester topcoat can be used. This layer is also a ca. 0.3 mm thick through and through coloured layer, but the surface structure depends mainly on the application technique (brush, roller or even spray) and will always be silky gloss and have some structure. It is possible to sand and/or polish this topcoat finish completely smooth.
There are several applications for polyester. For some applications, we have written a manual:
With polyester resin, we usually use a glass mat. This is a mat made of fibres about 5 cm long that are criss-crossed. These glass fibres are held together by an adhesive that dissolves in polyester resin. By spreading polyester resin on the mat, the mat will become flexible and take the underlying shape. So once the resin cures, we have a product that gets its strength from the glass fibre and stays in its shape because of the resin.
Application Features Fibreglass chopped strand mat 225gr/m2Never prepare more polyester resin than you can process in 10 minutes. Approximately 2% hardener is added to polyester resin.
The chart below shows how much hardener you need for polyester laminating resin.
Hardener 12-17 ℃ 18-23 ℃ 23-30 ℃ Resin: 2.5% 2% 1.5% 100 grams 2.5 ml 2 ml 1.5 ml 250 grams 6.25 ml 5 ml 3.75 ml 500 grams 12.5 ml 10 ml 7.5 ml grams 25 ml 20 ml 15 mlThe chart below shows how much hardener you need for polyester laminating resin.
MEKP Potlife Full cure Thickness 1 cm 1% 25 min. 10 hours 1.5% 22 min. 3 hours 2% 20 min. 2.5 hours Thickness 3 cm 0.4% 40 min. 2 hours 0.7% 27 min. 1.5 hours 1% 25 min. 45 min. Thickness 6 cm 0.3% 48 min. 45 min. 0.35% 43 min. 30 min. 0.4% 40 min. 30 min.Lamination is the technique/process of manufacturing a material in multiple layers (so that the composite material achieves improved strength) using a reinforcing material such as glass mat and polyester laminating resin. The reinforcing material is "wetted" with the polyester resin by using a brush or roller.
Commonly used auxiliary materials when laminating:
After laminating, the laminate may be a bit rough. To finish the laminate and increase its weather resistance, you can coat it with a polyester topcoat. Lightly sand the laminate with 60-grit sandpaper to prepare it for the topcoat.
In the video above, Kees shows how to finish polyester with polyester topcoat. After curing, your product is protected from the weather and has the colour you want.
Buy your polyester repair kit at Polyestershoppen.com. Our set is fully equipped with all the tools needed to carry out various repairs. Everything in one set! Easily repair holes, cracks and fractures in polyester items. Besides a small repair kit, we also have a polyester repair kit for the somewhat larger projects. Here, for example, we have laminating kit.
Styrene fumes from polyester is harmful to health and the environment. Ventilate the area you will be working in well and preferably wear a half mask, especially in a small space. Also make sure to avoid skin contact with polyester resin and hardener by wearing suitable gloves, such as latex gloves, nitrile gloves or household gloves.
Other commonly used protective materials:
The company is the world’s best Barrier Coatings for Pulp Molded Tableware supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.